Binomial Theorem

IP Math

Topic Summary

Expansion of a binomial

$$
(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b^{1}+{ }^{n} C_{2} a^{n-2} b^{2}+\cdots+{ }^{n} C_{r} a^{n-r} b^{r}+\cdots+b^{n}
$$

General Term

In the expansion of $(a+b)^{n}$, the $(r+1)^{\text {th }}$ term is given as $\binom{n}{r} a^{n-r} b^{r}$

Binomial Theorem Practice Questions

1. Find the coefficient of x^{2} in the expansion of $(1-3 x)^{2}\left(\frac{1}{\sqrt{x}}-\sqrt[4]{x^{3}}\right)^{8}$.
2. (i) Expand $(1+x)^{8}$ in ascending powers of x, up to and including the term in x^{3}.
(ii) In the expansion of $\left(1+y+k y^{2}\right)^{8}$ in ascending powers of y, the coefficient of y^{3} is zero. Find the value of the constant k.
3. Find the coefficient of x^{5} in the expansion of $\left(1-2 x+3 x^{2}\right)^{6}$.
4. Write down and simplify the first three terms in the expansion, in ascending powers of x, of $\left(2-\frac{x}{4}\right)^{10}$. Hence find the coefficient of x^{2} in the expansion of $(3+4 x)^{2}\left(2-\frac{x}{4}\right)^{10}$.

Answers

1. -420
2. (i) $(1+x)^{8}=1+8 x+28 x^{2}+56 x^{3}+\ldots$ (ii) $k=-1$
3. -2712
4. $1024-1280 x+720 x^{2} ;-7856$
